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Abstract
Using the linear entropy as a measure of entanglement, we investigate the
effect of a beam splitter on the Perelomov coherent states for the q-deformed
Uq(su(2)) algebra. We distinguish two cases: in the classical q → 1 limit, we
find that the states become Glauber coherent states as the spin tends to infinity;
whereas for q �= 1, the states, contrary to the earlier case, become entangled as
they pass through a beam splitter. The entanglement strongly depends on the
q-deformation parameter and the amplitude Z of the state.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.67.−a

1. Introduction

Quantum entanglement is one of the most important manifestations which distinguishes the
quantum world from the classical counterpart. As a physical resource, it plays a vital role in
various fields of quantum information theory, such as quantum cryptography [1–3], quantum
computation [4], quantum teleportation [5], etc. Therefore, the characterization and the
quantification of entanglement have attracted much attention and became one of the most
studied problems in recent years. In order to quantify entanglement a number of measures
have been proposed, such as concurrence [6, 7], entanglement of formation [8, 9] and linear
entropy [10, 11]. The fundamental problem for entanglement is to test whether a given state
of a composite quantum system, consisting of two or more subsystems, is separable or not; it
is entangled if it cannot be decomposed into a direct product of the states of the subsystems.

The preparation of entangled states has been studied extensively and constitutes an
essential step in quantum information theory. Recently, numerous devices have been proposed
and realized experimentally to generate quantum entanglement, such as beam splitter [12–18],
cavity QED [19, 20], NMR systems [21, 22], etc. A beam splitter is a linear optical device used
to generate quantum entanglement between two modes [23]. Its effect, as a lossless four-port
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device, is mathematically described by a unitary transformation connecting the input fields
and the output fields. Kim et al [16] studied the entangling properties of a beam splitter with
different input states, such as Fock states, coherent states, squeezed states and Gaussian mixed
states. They conjectured that in order to obtain entangled output states of a beam splitter, a
necessary condition is that at least one of the input fields should be nonclassical; this was later
proved in [24].

Another important concept that has attracted much attention in quantum information
theory is the notion of coherent, or quasi-classical states. These states are very useful for
investigating different problems in quantum physics [25–27] and have diverse applications in
many branches of physics [28, 29]. The coherent states were first introduced by Schrödinger
[30] in 1926, in the context of the harmonic oscillator and have been extensively studied in
physics [28, 31]. In 1965, the harmonic oscillator coherent states became very important in
quantum optics due to the seminal work of Glauber [32]. As eigenstate of Bose annihilation
operator â (̂a|α〉 = α|α〉), he realized that these states have the interesting property of
minimizing the Heisenberg uncertainty relation. In 1972, Peremolov introduced the spin
coherent states or SU(2) coherent states [33, 34] which are associated with the SU(2) group.
These states describe several systems and have many applications in quantum optics, statistical
mechanics and condensed matter physics [28, 31].

On the other hand, the quantum groups were introduced as a mathematical description of
deformed Lie algebra that gave the possibility to construct deformed coherent states. They
were introduced as a natural extension of the notion of coherent states [35, 36]. Generalized
deformation of Glauber states were constructed, see [37], as related to deformed harmonic
oscillators. Deformed spin coherent states were also constructed as coherent states related to
the quantum algebra suq(2) [38, 39].

The physical importance of the deformed coherent states lies in the fact that they offer
a best description for non-ideal physical devices such as lasers (i.e. real lasers) [40]. The
deformation parameter plays then the role of a tuning parameter defining how far the realized
device is from the ideal one.

The aim of the present paper is to investigate in detail the entanglement generated via a
beam splitter when a deformed spin coherent state is injected into one port and the vacuum
state is injected into the other. We show that this entanglement depends on the q-deformation
parameter and the amplitude, Z, of the state. For q = 1, the deformed spin coherent state
becomes the ordinary spin coherent state and one recovers the results of Markham and Vedral
in [41]. Namely, the entanglement tends to disappear in the limit of indefinitely high spin.
This, in turn, is due to the fact that in this limit the spin coherent states become Glauber
coherent states. A behaviour completely different arises when q �= 1; the output state is then
always entangled such that the entanglement passes through a minimum depending on the
value of the q-deformation parameter and increases thereafter to maintain a very slow growth.

The organization of this paper is as follows: section 2 is devoted to the construction of
Perelomov coherent states for the deformed su(2) algebra and their representation in Fock
space. In section 3, we examine the entanglement as the result of the effect of a beam splitter
on the deformed spin coherent state using the linear entropy. In section 4, we present summary
of our results.

2. Deformed spin coherent states and Fock space

The general bases for building up a quantum group (which is a deformation of a corresponding
‘usual’ group or algebra) were independently given in [38, 39, 42], using two different
approaches.
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In this paper we are interested in the deformation of the su(2) algebra which we denote
as Uq(su(2)), since it is in fact a deformation of the enveloping algebra U(su(2)).

The quantum algebra (deformed algebra) Uq(su(2)) is generated by three generators J
q
±

and J
q
z obeying the following commutation relations,[

J q
z , J

q
±
] = ±J

q
±,

[
J

q
+ , J

q
−
] = [

2J q
z

]
q
, (1)

where, q is a real parameter (although one can consider complex values for q, in this paper we
will focus on the results for q ∈ R) and where the ‘box function’ is defined by

[x]q = qx − q−x

q − q−1
= sinh(γ x)

sinh(γ )
for q = eγ γ ∈ R.

An important property is that one recovers the undeformed algebra su(2) by taking the limit
q −→ 1(or γ −→ 0).

The generators obey also the following relations:(
J

q
+

)+ = J
q
−,

(
J

q
−
)+ = J

q
+ ,

(
J q

z

)+ = J q
z . (2)

The unitary irreducible representation of the Uq(su(2)) are similar to those of su(2); they are
indexed using a single positive and half-interger parameter j . The orthonormal basis of the
space of representation is denoted as, |j,m〉, with m = j, j − 1, . . . ,−j . The generators act
on this basis following the rules,

J q
z |j,m〉 = m|j,m〉,

J
q
±|j,m〉 = ([j ∓ m]q[j ± m + 1]q)

1
2 |j,m ± 1〉.

(3)

The deformed spin coherent sates are coherent sates that are constructed using a formally
analogous scheme as the one allowing the construction of the spin coherent states starting
from the algebra su(2) [35, 36]. In this way, and in a given j -representation of Uq(su(2))

these states are defined by

|Z, j 〉q = N (|Z|2)eZJ
q
+

q |j,−j 〉, Z ∈ C, (4)

where we introduced the deformed exponential function

ex
q =

∞∑
n=0

xn

[n]q!
with [n]q! = [n]q[n − 1]q · · · [1]q and [0]q! = 1.

The normalization factor takes the shape

N (|Z|2) = 1√
(1 + |Z|2)2j

q

,

where, the q-binomial formula (deformed version of Newton’s binomial formula) [43] is used

(x + y)nq :=
n∑

m=0

[
n

m

]
q

xx−mym =
n∏

k=1

(x + qn−2k+1y). (5)

Here, the q-binomial function is[
n

m

]
q

= [n]q!

[n]q![n − m]q!
for n � m. (6)

Using these definitions, we may write the deformed spin coherent states as

|Z, j 〉q = (
(1 + |Z|2)2j

q

)− 1
2

j∑
m=−j

([
2j

j + m

]
q

) 1
2

Z(j+m)|j,m〉. (7)

3



J. Phys. A: Math. Theor. 42 (2009) 285306 K Berrada et al

Of course, for the particular value q = 1, one recovers the usual spin coherent states [34].
In a manner similar to [41, 44], and in order to apply these states in the current context

one needs to express the basis vectors |j,m〉 in terms of the Fock states |n〉 (|j,m〉 ∼ |n〉). In
[41], this was done using the Holstein–Primakoff realization of the su(2) algebra.

In our case, Uq(su(2)), one can achieve the same result using an alteration of the later
realization:

J
q
+ = a†

q

√
[2j − N ]q, J

q
− = √

[2j − N ]qaq, J q
z = N − j, (8)

where aq, a
†
q are deformed annihilation and creation operators acting on the Fock states, such

that

aq |n〉 = √
[n]q |n − 1〉, a†

q |n〉 = √
[n + 1]q |n + 1〉, N |n〉 = n|n〉. (9)

They obey the following relations [45, 46]:

aqa
†
q − qa†

qaq = q−N, [N, aq ] = −aq,
[
N, a†

q

] = a†
q . (10)

Using this realization and especially the last one given in equation (8), one gets the following
change of variables m = n − j or n = j + m, which when applied in equation (7) yields the
following expression of the deformed spin coherent states in terms of the Fock states

|Z, j 〉q = (
(1 + |Z|2)2j

q

)− 1
2

2j∑
n=0

([
2j

n

]
q

) 1
2

Zn|n〉. (11)

3. Action of a beam splitter

We describe the effect of a beam splitter on a state, |ψ〉, as it passes through one port, while the
other port is in the vacuum state. We assume that our beam splitter is 50:50 and the reflected
beam suffers a phase shift of π

2 . We consider that the horizontal input beam contains the state
that interests us while the vacuum state is always in the vertical input beam (see figure 1). The
action of the beam splitter can be described by a unitary operator ÛBS that relates the input
state to the corresponding output state by

|out〉 = ÛBS|int〉, (12)

where the unitary operator ÛBS is [16]

ÛBS = ei θ
2 (a†b+ab†). (13)

Here a and b (respectively a† and b†) are the annihilation operators (respectively creation
operators) describing the input fields.

Let us first introduce the effect of a 50:50 beam splitter on an input state comprised of
a number state in the horizontal input beam, that is |ψ〉 = |n〉, and vacuum state |0〉 in the
vertical input beam

ÛBS|n〉|0〉 =
n∑

p=0

(
n

p

) 1
2

T pR(n−p)|p〉|n − p〉, (14)

where, T and R are, respectively, the complex transition and reflexion coefficients satisfying
the normalization condition |T |2 + |R|2 = 1. As mentioned previously, the beam splitter is
50:50 and the reflected beam receives a phase shift of π

2 , then we have T = 1√
2

and R = i√
2
.

In this case equation (14) becomes

UBS|n〉|0〉 =
n∑

p=0

(
n

p

) 1
2
(

1√
2

)p (
i√
2

)(n−p)

|p〉|n − p〉. (15)
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Figure 1. A 50:50 beam splitter with a state |ψ〉 on the horizontal port and a vacuum state |0〉 on
the vertical port.
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0.065

0.070
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Figure 2. The linear entropy as a function of the spin j for q = 1 and |Z| = 1.

Here, p and n − p characterize the basis states of the output ports.
It can be easily verified that when the horizontal input contains a Glauber state [32],

defined as |α〉 = e
−|α|2

2
∑∞

n=0
αn√

n
|n〉, and the vacuum state |0〉 in the other port, the output state

from the beam splitter is

|out〉 = ÛBS|α, 0〉

= e− |α|
2

2
∞∑

p=0

αp

√
p!

T p|p〉 ⊗
∞∑

(n−p)=0

α(n−p)

√
(n − p)!

R(n−p)|n − p〉

=
∣∣∣∣ α√

2

〉
⊗

∣∣∣∣i α√
2

〉
, (16)

which is a product of two coherent states with zero entanglement.
Recently, Markham and Vedral [41] investigated the effect of a beam splitter on the spin

coherent states or Perelomov coherent states of su(2) Lie algebra for a single mode field.
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Figure 3. The linear entropy as a function of the spin j for q = 1 and |Z| = 3.

They show that these states approach to Glauber states as the spin tends to infinity, and thus
to become separable states (product of coherent states) after they pass the beam splitter and,
thus, have zero entanglement.

Let us now study the entanglement of deformed spin coherent state after being passed
through a beam splitter. We analyse and measure the entanglement of the beam splitter output
state by using the linear entropy. In fact, the effect of a beam splitter on an input state
comprised of a deformed spin coherent state in one mode and the vacuum state in the other is
obtained using equations (11) and (14) and is given by

|out〉 = ÛBS|Z, j 〉q |0〉

= 1(
(1 + |Z|2)2j

q

) 1
2

2j∑
n=0

n∑
p=0

([
2j

n

]
q

) 1
2 (

n

p

) 1
2

ZnT pR(n−p)|p〉|n − p〉 (17)

where

T = 1√
2
, R = i√

2
.

As a measure of entanglement, we use the linear entropy (upper bound of the Van Neumann
entropy), which is reasonable in several senses as an entanglement monotone because it gives
a bound on the entropy entanglement and as a monotonic function of the Schmidt values
[10, 41]. It is defined for the bipartite system as

S = 1 − Tr
(
ρ2

A

)
, (18)

where ρA is the reduced density operator for a system A. It is obtained by performing a partial
trace over system B of the density matrix for the combined system ρAB . In the present case,
from equation (17) we obtain

ρA = [2j ]q!

(1 + |Z|2)2j
q

2j∑
p,p′

min(2j−p,2j−p′)∑
m=0

×
(

(m + p)!(m + p′)!
[m + p]q![2j − m − p]q![m + p′]q![2j − m − p′]q!

) 1
2

×|Z|2m

m!
|T |2m ZpZp′√

p!p′! R
pRp′ |p〉〈p′|. (19)
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Figure 4. The linear entropy as a function of the spin j for q = 0.5 and |Z| = 3.
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Figure 5. The linear entropy as a function of the spin j for q = 1.5 and |Z| = 3.

Hence, the linear entropy is written as

S = 1 −
(

[2j ]q!

(1 + |Z|2)2j
q

)2 2j∑
p,p′

min(2j−p,2j−p′)∑
m,m′=0

×
(

L
p,p′
m,m′

M
p,p′
m,m′N

p,p′
m,m′

) 1
2 |Z|2(m+m′+p+p′)

m!m′!p!p′!
|T |2(m+m′)|R|2(p+p′), (20)

where

L
p,p′
m,m′ = (m + p)!(m + p′)!(m′ + p)!(m′ + p′)!,

M
p,p′
m,m′ = [m + p]q![m + p′]q![m′ + p]q![m′ + p′]q!,

N
p,p′
m,m′ = [2j − m − p]q![2j − m − p′]q![2j − m′ − p]q![2j − m′ − p′]q!.

It is remarkable to note that, for q = 1 this expression is equal to that obtained earlier in [41].
In fact, as for q = 1 the deformed spin coherent states become the ordinary spin coherent
states which is an expected result.
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Figure 6. The linear entropy as a function of the spin j for q = 0.5 and |Z| = 1.
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Figure 7. The linear entropy as a function of the spin j for q = 1.5 and |Z| = 1.

The main result obtained in [41] is that the entanglement is highly dependent on the value
of Z. It is also shown that for significantly high values of the spin j the linear entropy tends
to zero, meaning that the entanglement tends to disappear for these values. However this
decrease of the linear entropy is too slow and it is difficult to achieve these high values of spin
experimentally. The Z dependence in [41] can be summarized as follows: when |Z| � 1 the
linear entropy decreases from the maximum, attained at the origin, to a value after which it
tends slowly to zero (see figure 2). For |Z| > 1 it increases to a maximum then decreases
and declines slowly to zero thereafter (see figure 3). For the formula of the linear entropy we
obtained (20), a comparison should first be addressed with the results of [41] (i.e., for ordinary
spin coherent states or equivalently for q = 1).

For |Z| = 3 the linear entropy obtained in equation (20) is subjected to an initial quick
change strongly depending on the amplitude Z: it goes to a maximum, declines to a minimum
corresponding to the minimal entanglement of the output state and grows again. The linear
entropy then settles to a very slow increasing (see figures 4 and 5). For a given value of Z,
the minimum value of entanglement is dependent on q. In fact the closer q is to 1 (from left

8
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Figure 8. The linear entropy as a function of the spin j for q = 0.95 and |Z| = 1.
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Figure 9. The linear entropy as a function of the spin j for q = 1.05 and |Z| = 1.

or right), the higher the value of j for which the minimum is attained. For the limiting value
q = 1 this value tends to infinity.

When |Z| = 1 we can note a similar classification. For q �= 1, the linear entropy declines
to a minimum (minimal entanglement of the output state, which depends on the value of q)
and increases thereafter to maintain a very slow growth. In case the values of q are close to
one, the minimum is attainted for greater spin (see figures 6–9). This minimum is reached
only at infinity for q = 1. Another remarkable feature, figure 11, is that the minimum value
of entanglement gets smaller as q approaches the value q = 1 (from left or light), the limiting
value being zero entanglement but it is achieved for infinitely large values of j and q = 1.

We note that when |Z| = 3 and q is very close to 1, the minimum of the linear entropy
is attained for a spin value j which is larger than the case when |Z| = 1 (for example, when
|Z| = 3 and q = 0.95 the minimum of entanglement is attained at j = 34.5 whereas in the
case where |Z| = 1 the minimum is at j = 5 (figure 8)).

However, for every value of the amplitude Z, the q-deformation parameter does not
have any impact on the linear entropy for j = 1

2 , then the output state has the same
initial entanglement. From another side, when we are concerned with small amplitude,
the entanglement of the output state is close to zero for q = 1. When the q-deformation

9



J. Phys. A: Math. Theor. 42 (2009) 285306 K Berrada et al

Figure 10. The linear entropy as a function of the spin j for |Z| = 0.2.

Figure 11. The linear entropy as a function of spins j and q for |Z| = 1.

parameter varies around one, the linear entropy vanishes approximatively only for small spin
j (see figure 10).

We stressed earlier that for |Z| � 1 (figure 11) the entanglement gets smaller as the
deformation parameter q gets closer to 1 (either from above or below). This behaviour
changes for |Z| > 1 in fact plotting the linear entropy versus q (for |Z| = 3 and different
values of j ), figures 12 and 13 show that the entanglement decreases and attains a local minima,
whereas it latter rises to a local maxima for q = 1. The value of the minimum entanglement
depends on the spin j (and of course on Z also). In fact, higher the value of the spin, higher
the value of q at which the minimum entanglement occurs (provided that q � 1; however, if
one considers q � 1 then this value gets smaller as j gets higher).

10
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Figure 12. The linear entropy as a function of q for |Z| = 3.

Figure 13. The linear entropy as a function of spins j and q for |Z| = 3.

4. Conclusion

In summary, we have introduced the Perelomov coherent states for the Uq(su(2)) quantum
algebra and their representation in Fock states. Using the linear entropy as a measure of
entanglement, we have investigated the entanglement generated via a beam splitter when the
deformed spin coherent state is incident on one input port and the vacuum state is incident on
the other.

We show that the entanglement of the output state depends on the q-deformation parameter
and the amplitude Z of the state. For each value of |Z|, the entropy is subjected to an initial quick
change and thereafter settles to a very slow monotony. The entanglement has a minimum value
depending on the value of q: for q closer to 1 (from left or right) this minimal entanglement
is attained for larger spin (for q = 1 the minimum vanishes for higher spin).

We also note that for |Z| � 1, the entanglement of the output state decreases as the
q-deformation parameter approaches to 1 for all spin j and it is minimal at q = 1. In the
case where |Z| > 1, this behaviour reverses and the entanglement reaches a local maximum
for q = 1 (i.e., non-deformed coherent states). A minimum entanglement exists in this case,

11
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however, the value of this minimum entanglement and the value of q at which it is attained are
j -dependent.
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